Differential Geometry

Homework 3

Mandatory Exercise 1. (10 points)

Consider the unit sphere S^1 in the complex plane \mathbb{C} and the real projective line $\mathbb{R}P^1$ as the quotient space of S^1 under the identification $z \sim -z$.

- (a) Show that $\mathbb{R}P^1$ is a topological manifold and admits a differentiable structure. Describe this differentiable structure explicit by giving an atlas.
- (b) Is the map

 $\mathbb{R}P^1 \longrightarrow S^1$ $[z] \longmapsto z^2$

a diffeomorphism?

Mandatory Exercise 2. (10 points)

- (a) Is there an embedding $S^n \to \mathbb{R}^n$?
- (b) Is there an embedding $S^n \times \mathbb{R} \to \mathbb{R}^{n+1}$?

Suggested Exercise 1. (0 points)

Is every bijective differentiable map a diffeomorphism? (Prove this or give a counterexample.)

Suggested Exercise 2. (0 points)

Consider the surface C of a unit cube

$$C := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \colon \max_i (|x_i|) = 1 \}.$$

- (a) Show that C is not a smooth submanifold of \mathbb{R}^3 .
- (b) Show that C is a topological manifold and define a differentiable structure on it.

Suggested Exercise 3. (0 points)

Consider the subspace M of real (4×4) -matrices A fulfilling the equation $A^t D A = D$, where D denotes the diagonal matrix with diagonal entries (1, 1, 1, -1). Show that M is a 6-dimensional submanifold of the space $\mathcal{M}(4 \times 4) \equiv \mathbb{R}^{16}$ of all (4×4) -matrices.

Suggested Exercise 4. (0 points)

- (a) Prove that the orthogonal group O(n) is a submanifold of $\mathcal{M}(n \times n) \equiv \mathbb{R}^{n^2}$. What is its dimension?
- (b) Describe $T_{\mathrm{Id}}O(n) \subset T_{\mathrm{Id}}\mathbb{R}^{n^2}$.

Suggested Exercise 5. (0 points)

Consider the Möbiusstrip M as a subset of \mathbb{R}^3 . The boundary of M is homeomorphic to S^1 and can be deformed inside \mathbb{R}^3 into the standard unit circle. Find an embedding of the Möbiusstrip M into \mathbb{R}^3 with boundary a standard unit circle. Build a paper model.

Suggested Exercise 6. (0 points)

If $f: M \to N$ is a diffeomorphism and X, Y are vector fields on M then

[df(X), dF(Y)] = df([X, Y]).

Hand in: Monday 2nd May in the exercise session in Seminar room 2, MI